Environmental Protection Agency - by the application of the best available technology economically achievable. - 465.13 New source performance standards. - 465.14 Pretreatment standards for existing sources. - 465.15 Pretreatment standards for new sources. ## Subpart B—Galvanized Basis Material Subcategory - 465.20 Applicability; description of the galvanized basis material subcategory. - 465.21 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. - 465.22 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. - 465.23 New source performance standards. - 465.24 Pretreatment standards for existing sources. - 465.25 Pretreatment standards for new sources. ## Subpart C—Aluminum Basis Material Subcategory - 465.30 Applicability; description of the aluminum basis material subcategory. - 465.31 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. - 465.32 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. - 465.33 New source performance standards. - 465.34 Pretreatment standards for existing sources. - 465.35 Pretreatment standards for new sources. ## Subpart D—Canmaking Subcategory - 465.40 Applicability; description of the canmaking subcategory. - 465.41 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available. - 465.42 Effluent limitations representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. - 465.43 New source performance standards. - 465.44 Pretreatment standards for existing sources. - 465.45 Pretreatment standards for new sources. - 465.46 Effluent limitations representing the degree of effluent reduction attainable by the application of the best conven- tional pollutant control technology. [Reserved] AUTHORITY: Secs. 301, 304 (b), (c), (e), and (g), 306 (b) and (c), 307 (b) and (c), and 501 of the Clean Water Act (the Federal Water Polution Control Act Amendments of 1972, as amended by the Clean Water Act of 1977) (the "Act"); 33 U.S.C. 1311, 1314 (b), (c), (e), and (g), 1316 (b) and (c), 1317 (b) and (c), and 1361; 86 Stat. 816, Pub. L. 92-500; 91 Stat. 1567, Pub. L. 95-217. SOURCE: 47 FR 54244, Dec. 1, 1982, unless otherwise noted. #### GENERAL PROVISIONS ### § 465.01 Applicability. This part applies to any coil coating facility or to any canmaking facility that discharges pollutants to waters of the United States or that introduces pollutants to a publicly owned treatment works. [48 FR 52399, Nov. 17, 1983] ## § 465.02 General definitions. In addition to the definitions set forth in 40 CFR part 401, the following definitions apply to this part: - (a) "Coil" means a strip of basis material rolled into a roll for handling. - (b) "Coil coating" means the process of converting basis material strip into coated stock. Usually cleaning, conversion coating, and painting are performed on the basis material. This regulation covers processes which perform any two or more of the three operations. - (c) "Basis material" means the coiled strip which is processed. - (d) "Area processed" means the area actually exposed to process solutions. Usually this includes both sides of the metal strip. - (e) "Steel basis material" means cold rolled steel, hot rolled steel, and chrome, nickel and tin coated steel which are processed in coil coating. - (f) "Galvanized basis material" means zinc coated steel, galvalum, brass and other copper base strip which is processed in coil coating. - (g) "Aluminum basis material" means aluminum, aluminum alloys and aluminum coated steels which are processed in coil coating. - (h) The term "can" means a container formed from sheet metal and ## § 465.03 consisting of a body and two ends or a body and a top. - (i) The term "canmaking" means the manufacturing process or processes used to manufacture a can from a basic metal. - (j) The term "Total Toxic Organics (TTO)" shall mean the sum of the mass of each of the following toxic organic compounds which are found at a concentration greater than 0.010 mg/1. 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1,2,2-Tetrachloroethane Bis (2-chloroethyl) ether Chloroform 1,1-Dichloroethylene Methylene chloride (dichloromethane) Pentachlorophenol Bis (2-ethylhexyl) phthalate Butyl benzyl-phthalate Di-N-butyl phthalate Phenanthrene Tetrachloroethylene Toluene [47 FR 54244, Dec. 1, 1982, as amended at 48 FR 52399, Nov. 17, 1983] # § 465.03 Monitoring and reporting requirements. The following special monitoring requirements apply to all facilities controlled by this regulation. - (a) Periodic analyses for cyanide are not required when both of the following conditions are met: - (1) The first wastewater sample taken in each calendar year has been analyzed and found to contain less than 0.07 mg/l cyanide - (2) The owner or operator of the coil coating facility certifies in writing to the POTW authority or permit issuing authority that cyanide is not used in the coil coating process. - (b) The "monthly average" regulatory values shall be the basis for the monthly average discharge limits in direct discharge permits and for pretreatment standards. Compliance with the monthly discharge limit is required regardless of the number of samples analyzed and averaged. - (c) The following determination method shall be used for the determination of the concentration of oil and grease in wastewater samples from all subcategories of coil coating (Based on Standard Methods, 15th Edition, Methods 503A and 503E). In this meth- od, a partition gravimetric procedure is used to determine hydrocarbon (petroleum based) oil and grease (O&G-E). (1) *Apparatus.* (i) Separatory funnel, 1 liter, with TFE ¹ stopcock. (ii) Glass stoppered flask, 125 ml. (iii) Distilling flask, 125 ml. (iv) Water bath. - (v) Filter paper, 11 cm diameter.2 - (vi) Glass funnel. - (vii) Magnetic stirrer and Teflon coated stir bar. - (2) Reagents. (i) Hydrochloric acid, HCl, 1+1. - (ii) Trichlorotrifluoroethane.³ (1,1,2-trichloro-1,2,2-trifluoroethane), boiling point 47 °C. The solvent should leave no measurable residue on evaporation; distill if necessary. Do not use any plastic tubing to transfer solvent between containers. - (iii) Sodium sulfate, Na₂ SO₄, anhydrous crystal. - (iv) Silica gel, 60 to 200 mesh.⁴ Dry at 110 °C for 24 hours and store in a tightly sealed container. - (3) Procedure. To determine hydrocarbon oil and grease, collect about 1 liter of sample and mark sample level in bottle for later determination of sample volume. Acidify to pH 2 or lower; generally, 5 ml HCl is sufficient. Transfer to a separatory funnel. Carefully rinse sample bottle with 30 ml trichlorotrifluoroethane and add solvent washings to separatory funnel. Preferably shake vigorously for 2 minutes. However, if it is suspected that a stable emulsion will form, shake gently for 5 to 10 minutes. Let layers separate. Drain solvent layer through a funnel containing solvent-moistened filter paper into a tared clean flask. If a clear solvent layer cannot be obtained, add 1g Na₂ SO₄ to the filter paper cone and slowly drain emulsified solvent onto the crystals. Add more Na₂ SO₄ if necessary. Extract twice more with 30 ml solvent each but first rinse sample container with each solvent portion. Combine extracts in tared flask and wash filter with an additional 10 to 20 ml. solvent. Add 3.0 g silica gel. Stopper flask and stir on a magnetic stirrer for 5 minutes. Filter ¹ Teflon® or equivalent. ² Whatman No. 40 or equivalent. ³ Freon or equivalent. ⁴ Davidson Grade 950 or equivalent.